PREDICTION OF AERODYNAMIC PERFORMANCE OF AN AFTERMARKET VORTEX STABILIZER

PREPARED FOR: CHESS & EVANS

PREPARED BY: ANALYSIS & DESIGN APPLICATION CO., LTD.

Prepared By:

Takahiro Sonoda

Approved By:

Dan Spuckler

STAR-CCM+

Approved By:

Robert Lotz

Contents

Page

•	Executive Summary			
	– Model Overview	4		
	 Key Results 	5		
	 Summary and Discussions 	7		
•	Description of Model			
	 Model Overview 	8		
	 Computational Mesh 	11		
•	Description of Analysis			
	 Computational Fluid Dynamics (CFD) 	14		
	 Drag and Drag Coefficient 	15		
	 Exterior Boundary Conditions 	17		
	 Fluid Properties at Inlet 	19		
	 Analysis Setup, Run Statistics 	20		
•	Results: Baseline			
	 Convergence History 	21		
	– Streamlines	22		
	 Iso-Surface of Turbulence Kinetic Energy 	25		
	 Skin Friction Coefficient 	28		

Disclaimer

CD-adapco's engineering analysis Results provided herein are dependent on the accuracy of the geometry, boundary conditions, material properties, and other data provided by your Company and may deviate from real physical operation. These Results are not intended as a substitute for sound engineering judgment and CD-adapco is not liable for the outcome of the use of these Results.

Model Overview

- The objective of this project was to investigate the effect of vortex stabilizers installed on the rear roof of a car for aerodynamic performance in terms of drag reduction.
- A 3D CAD geometry of a production personal vehicle (VW Golf IV two door) was selected and purchased form the website 3DCADBrowser.com, which provides threedimensional geometries of common vehicles. These surfaces are not provided by the OEM, and as such do not necessarily conform with the actual dimension of the vehicle.
- Two CFD models were created by **CD-adapco** using **STAR-CCM+** version 5.04.008. These models represent a baseline geometry of the vehicle, as well as one geometry with the GasPods.
- Each GasPod was positioned 4 inches apart from each other in the lateral direction and 10 inches upstream from the trailing edge of the roof.
- A half symmetry model was used to simulate the flow field.
- The computational models were generated based on standard mesh settings for external aerodynamic analyses with appropriate refinement particular to this model.
- Analyses were performed for the vehicle speed of 65 miles/hour.

Key Results: Drag Coefficient

- The drag coefficient predicted from the baseline model was compared against the published data for the vehicle. (See for example http://www.newcars.com/2003/volkswagen/volkswagen-golf-specs.html)
- The drag coefficient was predicted within about 13%. Considering that the CFD model is not based on actual CAD data, as well being considerably simplified (wheel wells, underbody, missing suspension and brake rotors), this is an acceptable result.
- The GasPods reduce the drag of the baseline car by about 5%.

Key Results: Base Pressure Distribution

Summary and Discussions

- CFD results show that installing GasPods reduces the drag coefficient by about 0.0186, which is equivalent to 5.24 % reduction in drag.
- Although Gas Pods increase the profile drag, overall reduction in drag by modifying flow structures in the wake layer turns out to be greater than the addition of the profile drag.

ENGINEERING SERVICES

- Presence of GasPods in the growing boundary layer decelerates the downstream flow, which results in a pressure rise inside of the shear layer.
- This pressure rise propagates through the shear layer into the base region of the vehicle.
- Presence of GasPods on the roof causes increase in base pressure of the vehicle in the wake region, which results in reduction in drag.
- This analysis demonstrates that change in the flow field, especially pressure in the vicinity of the shear layer that lies between the free stream and the re-circulation region can decreases drag on the vehicle.

CD-adapco

Model Overview: Selected Vehicle

Model Overview: GasPod Geometry

Model Overview: Position of Gas Pods

Computational Mesh

ENGINEERING SERVICES CD-adapco

Computational Mesh

		Baseline	Gas Pods
Cell c	ounts	23.67 millions	23.82 millions
Base size		20 mm	
Prism Layer Thickness		5.47 mm	
Near wall thickness	Il thickness 0.002 mm		mm
# of prism layers		12	
Surface size	Minimum	10 mm	
	Target	20 n	ım

Computational Fluid Dynamics (CFD)

- Computational Fluid Dynamics is an analysis tool to predict physical fluid flow and heat transfer using computational methods
- CFD is widely used in engineering community to improve engineering design and to reduce the overall cost and time of product development

Drag and Drag Coefficient

- A drag force is a component of the resultant force on an object that is parallel to the freestream.
- A drag force on a vehicle consists of two contributions: pressure (or form) drag and skin friction drag.
- Pressure drag is the stream-wise component of the pressure force integrated over the entire vehicle while skin friction drag is the stream-wise component of the shear force (friction between the air and vehicle surface) over the vehicle.
- Aerodynamic performance of various vehicles is often described by a drag coefficient which is independent of the vehicle speed and shape (area). The drag coefficient of a vehicle remains close to constant over the range of typical highway speeds (45 mph to more than 100 mph)
- A drag coefficient is defined by the following formulae

$$C_D = \frac{D}{\frac{1}{2}\rho_{ref}V_{ref}^2 A_{ref}}$$

- C_D Drag coefficient
- D Drag force
- ρ_{ref} Reference density
- V_{ref} Reference velocity
- A_{ref} Reference Area (Frontal area of the vehicle)

Drag and Drag Coefficient

- As an advantage of expressing a drag force in terms of a drag coefficient, comparison of aerodynamic performance can be made regardless of the vehicle size, vehicle speed, and altitude at which the vehicle is going to be operated
- Since a drag coefficient remains relatively constant in a typical range of operations, a drag force varies with density (altitude), frontal area of the vehicle, and vehicle speed as shown below
- For a certain vehicle model at an certain altitude, a drag varies only with vehicle speed as shown below

Exterior Boundary Conditions

Exterior Boundary Conditions

Front Surface	Velocity Inlet	V = 65 mph P = 0.0 atm
Rear Surface	Pressure Outlet	Extrapolated P = 0.0 atm T = 308 K
Outer Surface	Symmetry	Extrapolated P = 0.0 atm T = 308 K
Ground	Wall	No-Slip
Front Tires (2x)	Moving Wall	No-Slip T = adiabatic ω _{wall} = 2126.28 rpm
Rear Tires (2x)	Moving Wall	No-Slip T = adiabatic ω_{wall} = 2126.28 rpm

Fluid Properties at Inlet

Description of Analysis

	Inlet Velocity	65 mph	
AIR	Temperature	Iso-thermal	
	Ambient Pressure	1.0 atm	
	Dynamic Viscosity	1.86 E⁻⁵ Pa-s	
	Density	1.18 kg/m³ (4.28 lb/in³)	

Analysis Setup, Run Statistics

Solution Algorith	າຫ		SIMPLE
Convective Elux Differencing		Upv	wind (2 nd order)
Scheme	Other Variables	Upv	wind (2 nd order)
Turbulence Model			k-ω SST
Wall Treatment		Two laye	r all Y+ wall function
STAR CCM+ Ver	sion	5.04.008	
Computing Platform		LINUX Cluster 64-bit 3.2GHz Xeon Processors	
Number of Processors		32	
Total number of iterations		50,000	
Average Speed		0.14 sec/iteration	
Total Analysis Time		8 Days 4.5 hrs	
Power Usage		1.00 kW	

Convergence History

CD-adapco Report No. 1073-001

Streamlines

Streamlines

Streamlines

Iso-surface of Turbulence Kinetic Energy

Iso-surface of Turbulence Kinetic Energy

Iso-surface of Turbulence Kinetic Energy

Skin Friction Coefficient

Skin Friction Coefficient

Definitions of Variables and Reference Values

• Pressure coefficient is another non-dimensional variable used to represent pressure (force per unit area).

$$C_P = \frac{P - P_{ref}}{\frac{1}{2}\rho_{ref} V_{ref}^{2}}$$

- Frontal area is the projected area of the vehicle onto the plane normal to the flow direction.
- The following values were used to convert dimensional variables such as drag, pressure, and shear stress to corresponding non-dimensional variables while reference values are arbitrary.

P_{ref}	Reference Pressure	1.0 atm
ρ_{ref}	Reference density	4.278 lb _m /in ³
$V_{\rm ref}$	Reference velocity	65.0 mph
A_{ref}	Reference Area (Frontal area of the vehicle)	1515.4 in ²